World News Trust World News Trust
World News Trust World News Trust
  • News Portal
  • All Content
    • Edited
      • News
      • Commentary
      • Analysis
      • Advisories
      • Source
    • Flatwire
  • Topics
    • Agriculture
    • Culture
      • Arts
      • Children
      • Education
      • Entertainment
      • Food and Hunger
      • Sports
    • Disasters
    • Economy
    • Energy
    • Environment
    • Government
    • Health
    • Media
    • Science
    • Spiritual
    • Technology
    • Transportation
    • War
  • Regions
    • Africa
    • Americas
      • North America
      • South America
    • Antarctica
    • Arctic
    • Asia
    • Australia/Oceania
    • Europe
    • Middle East
    • Oceans
      • Arctic Ocean
      • Atlantic Ocean
      • Indian Ocean
      • Pacific Ocean
      • Southern Ocean
    • Space
  • World Desk
    • Submit Content
  • About Us
  • Sign In/Out
  • Register
  • Site Map
  • Contact Us
  • The Techno-Feudal Method to Musk’s Twitter Madness | Yanis Varoufakis
  • Wars Aren’t Won with Peacetime Economies | Joseph E. Stiglitz
  • Strangers Behind the Trees: On the Death of Rayan Suliman and His Fear of Monsters | Ramzy Baroud
  • The Stagflationary Debt Crisis Is Here | Nouriel Roubini
  • How to Green Our Parched Farmlands & Finance Critical Infrastructure | Ellen Brown
  • From Great Moderation to Great Stagflation | Nouriel Roubini
  • The Road to Fascism: How the War in Ukraine is Changing Europe | Ramzy Baroud

New study visualizes motion of water molecules, promises new wave of electronic devices | Takeshi Egami

More items by author
Categories
Edited | Front Page Stories | All Content | Education | Energy | Government | Science | North America | News | News -- WNT Selected
Tool Bar
View Comments

An Oak Ridge National Laboratory-led research team used a sophisticated X-ray scattering technique to visualize and quantify the movement of water molecules in space and time, which provides new insights that may open pathways for liquid-based electronics. Credit: Jason Richards/Oak Ridge National Laboratory, US Dept. of EnergyAn Oak Ridge National Laboratory-led research team used a sophisticated X-ray scattering technique to visualize and quantify the movement of water molecules in space and time, which provides new insights that may open pathways for liquid-based electronics. Credit: Jason Richards/Oak Ridge National Laboratory, US Dept. of Energy

Dec. 22, 2017 (Phys.org) -- A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.

A team of researchers led by the Department of Energy's Oak Ridge National Laboratory used a high-resolution inelastic X-ray scattering technique to measure the strong bond involving a hydrogen atom sandwiched between two oxygen atoms. This hydrogen bond is a quantum-mechanical phenomenon responsible for various properties of water, including viscosity, which determines a liquid's resistance to flow or to change shape.

While water is the most abundant substance on Earth, its behavior at a molecular level is not well understood.

(more)

READ MORE: Phys.org

back to top
  • Created
    Friday, December 22 2017
  • Last modified
    Saturday, December 23 2017
  1. You are here:  
  2. Home
  3. All Content
  4. Edited
  5. New study visualizes motion of water molecules, promises new wave of electronic devices | Takeshi Egami
Copyright © 2023 World News Trust. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.